Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 52(2): 517-527, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38572868

RESUMO

Cellular signalling is a complex process and involves cascades of enzymes that, in response to a specific signal, give rise to exact cellular responses. Signalling scaffold proteins organise components of these signalling pathways in space and time to co-ordinate signalling outputs. In this review we introduce a new class of mechanically operated signalling scaffolds that are built into the cytoskeletal architecture of the cell. These proteins contain force-dependent binary switch domains that integrate chemical and mechanical signals to introduce quantised positional changes to ligands and persistent alterations in cytoskeletal architecture providing mechanomemory capabilities. We focus on the concept of spatial organisation, and how the cell organises signalling molecules at the plasma membrane in response to specific signals to create order and distinct signalling outputs. The dynamic positioning of molecules using binary switches adds an additional layer of complexity to the idea of scaffolding. The switches can spatiotemporally organise enzymes and substrates dynamically, with the introduction of ∼50 nm quantised steps in distance between them as the switch patterns change. Together these different types of signalling scaffolds and the proteins engaging them, provide a way for an ordering of molecules that extends beyond current views of the cell.


Assuntos
Citoesqueleto , Transdução de Sinais , Humanos , Citoesqueleto/metabolismo , Animais , Mecanotransdução Celular , Membrana Celular/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(13): e2314947121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513099

RESUMO

Protein kinase A (PKA) is a ubiquitous, promiscuous kinase whose activity is specified through subcellular localization mediated by A-kinase anchoring proteins (AKAPs). PKA has complex roles as both an effector and a regulator of integrin-mediated cell adhesion to extracellular matrix (ECM). Recent observations demonstrate that PKA is an active component of focal adhesions (FA), suggesting the existence of one or more FA AKAPs. Using a promiscuous biotin ligase fused to PKA type-IIα regulatory (RIIα) subunits and subcellular fractionation, we identify the archetypal FA protein talin1 as an AKAP. Talin is a large, mechanosensitive scaffold that directly links integrins to actin filaments and promotes FA assembly by recruiting additional components in a force-dependent manner. The rod region of talin1 consists of 62 α-helices bundled into 13 rod domains, R1 to R13. Direct binding assays and NMR spectroscopy identify helix41 in the R9 subdomain of talin as the PKA binding site. PKA binding to helix41 requires unfolding of the R9 domain, which requires the linker region between R9 and R10. Experiments with single molecules and in cells manipulated to alter actomyosin contractility demonstrate that the PKA-talin interaction is regulated by mechanical force across the talin molecule. Finally, talin mutations that disrupt PKA binding also decrease levels of total and phosphorylated PKA RII subunits as well as phosphorylation of VASP, a known PKA substrate, within FA. These observations identify a mechanically gated anchoring protein for PKA, a force-dependent binding partner for talin1, and a potential pathway for adhesion-associated mechanotransduction.


Assuntos
Proteínas de Ancoragem à Quinase A , Adesões Focais , Adesões Focais/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Talina/metabolismo , Mecanotransdução Celular , Adesão Celular/fisiologia , Integrinas/metabolismo , Ligação Proteica , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
3.
Curr Opin Cell Biol ; 87: 102327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301379

RESUMO

Cells sense and respond to subtle changes in their physicality, and via a myriad of different mechanosensitive processes, convert these physical cues into chemical and biochemical signals. This process, called mechanotransduction, is possible due to a highly sophisticated machinery within cells. One mechanism by which this can occur is via the stretching of mechanosensitive proteins. Stretching proteins that contain force-dependent regions results in altered geometry and dimensions of the connections, as well as differential spatial organization of signals bound to the stretched protein. The purpose of this mini-review is to discuss some of the intense recent activity in this area of mechanobiology that strives to understand how protein stretching can influence signaling outputs and cellular responses.


Assuntos
Mecanotransdução Celular , Transdução de Sinais , Mecanotransdução Celular/fisiologia
4.
bioRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38328095

RESUMO

It is widely believed that tissue mechanical properties, determined mainly by the extracellular matrix (ECM), are actively maintained. However, despite its broad importance to biology and medicine, tissue mechanical homeostasis is poorly understood. To explore this hypothesis, we developed mutations in the mechanosensitive protein talin1 that alter cellular sensing of ECM stiffness. Mutation of a novel mechanosensitive site between talin1 rod domain helix bundles 1 and 2 (R1 and R2) shifted cellular stiffness sensing curves, enabling cells to spread and exert tension on compliant substrates. Opening of the R1-R2 interface promotes binding of the ARP2/3 complex subunit ARPC5L, which mediates the altered stiffness sensing. Ascending aortas from mice bearing these mutations show increased compliance, less fibrillar collagen, and rupture at lower pressure. Together, these results demonstrate that cellular stiffness sensing regulates ECM mechanical properties. These data thus directly support the mechanical homeostasis hypothesis and identify a novel mechanosensitive interaction within talin that contributes to this mechanism.

5.
Cell Rep ; 42(12): 113554, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38100355

RESUMO

Cell invasion is a multi-step process, initiated by the acquisition of a migratory phenotype and the ability to move through complex 3D extracellular environments. We determine the composition of cell-matrix adhesion complexes of invasive breast cancer cells in 3D matrices and identify an interaction complex required for invasive migration. ßPix and myosin18A (Myo18A) drive polarized recruitment of non-muscle myosin 2A (NM2A) to adhesion complexes at the tips of protrusions. Actomyosin force engagement then displaces the Git1-ßPix complex from paxillin, establishing a feedback loop for adhesion maturation. We observe active force transmission to the nucleus during invasive migration that is needed to pull the nucleus forward. The recruitment of NM2A to adhesions creates a non-muscle myosin isoform gradient, which extends from the protrusion to the nucleus. We postulate that this gradient facilitates coupling of cell-matrix interactions at the protrusive cell front with nuclear movement, enabling effective invasive migration and front-rear cell polarity.


Assuntos
Citoesqueleto de Actina , Actomiosina , Retroalimentação , Movimento Celular/fisiologia , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Adesão Celular/fisiologia , Matriz Extracelular/metabolismo
6.
PLoS Comput Biol ; 19(10): e1011500, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37801464

RESUMO

Cells interact with the extracellular matrix (ECM) via cell-ECM adhesions. These physical interactions are transduced into biochemical signals inside the cell which influence cell behaviour. Although cell-ECM interactions have been studied extensively, it is not completely understood how immature (nascent) adhesions develop into mature (focal) adhesions and how mechanical forces influence this process. Given the small size, dynamic nature and short lifetimes of nascent adhesions, studying them using conventional microscopic and experimental techniques is challenging. Computational modelling provides a valuable resource for simulating and exploring various "what if?" scenarios in silico and identifying key molecular components and mechanisms for further investigation. Here, we present a simplified mechano-chemical model based on ordinary differential equations with three major proteins involved in adhesions: integrins, talin and vinculin. Additionally, we incorporate a hypothetical signal molecule that influences adhesion (dis)assembly rates. We find that assembly and disassembly rates need to vary dynamically to limit maturation of nascent adhesions. The model predicts biphasic variation of actin retrograde velocity and maturation fraction with substrate stiffness, with maturation fractions between 18-35%, optimal stiffness of ∼1 pN/nm, and a mechanosensitive range of 1-100 pN/nm, all corresponding to key experimental findings. Sensitivity analyses show robustness of outcomes to small changes in parameter values, allowing model tuning to reflect specific cell types and signaling cascades. The model proposes that signal-dependent disassembly rate variations play an underappreciated role in maturation fraction regulation, which should be investigated further. We also provide predictions on the changes in traction force generation under increased/decreased vinculin concentrations, complementing previous vinculin overexpression/knockout experiments in different cell types. In summary, this work proposes a model framework to robustly simulate the mechanochemical processes underlying adhesion maturation and maintenance, thereby enhancing our fundamental knowledge of cell-ECM interactions.


Assuntos
Actinas , Adesões Focais , Adesões Focais/metabolismo , Vinculina/metabolismo , Actinas/metabolismo , Integrinas/metabolismo , Matriz Extracelular/metabolismo , Adesão Celular/fisiologia , Talina
7.
bioRxiv ; 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37645895

RESUMO

The cAMP-dependent protein kinase (Protein Kinase A; PKA) is a ubiquitous, promiscuous kinase whose activity is focused and specified through subcellular localization mediated by A-kinase anchoring proteins (AKAPs). PKA has complex roles as both an effector and a regulator of integrin-mediated cell adhesion to the extracellular matrix (ECM). Recent observations demonstrate that PKA is an active component of focal adhesions (FA), intracellular complexes coupling ECM-bound integrins to the actin cytoskeleton, suggesting the existence of one or more FA AKAPs. Using a combination of a promiscuous biotin ligase fused to PKA type-IIα regulatory (RIIα) subunits and subcellular fractionation, we identify the archetypal FA protein talin1 as an AKAP. Talin is a large, mechanosensitive scaffold that directly links integrins to actin filaments and promotes FA assembly by recruiting additional components in a force-dependent manner. The rod region of talin1 consists of 62 α-helices bundled into 13 rod domains, R1-R13. Direct binding assays and nuclear magnetic resonance spectroscopy identify helix41 in the R9 subdomain of talin as the PKA binding site. PKA binding to helix41 requires unfolding of the R9 domain, which requires the linker region between R9 and R10. Finally, single-molecule experiments with talin1 and PKA, and experiments in cells manipulated to alter actomyosin contractility demonstrate that the PKA-talin interaction is regulated by mechanical force across the talin molecule. These observations identify the first mechanically-gated anchoring protein for PKA, a new force-dependent binding partner for talin1, and thus a new mechanism for coupling cellular tension and signal transduction.

8.
Biology (Basel) ; 12(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37508384

RESUMO

Integrin receptors are essential contributors to neurite outgrowth and axon elongation. Activated integrins engage components of the extracellular matrix, enabling the growth cone to form point contacts, which connect the extracellular substrate to dynamic intracellular protein complexes. These adhesion complexes facilitate efficient growth cone migration and neurite extension. Major signalling pathways mediated by the adhesion complex are instigated by focal adhesion kinase (FAK), whilst axonal guidance molecules present in vivo promote growth cone turning or retraction by local modulation of FAK activity. Activation of FAK is marked by phosphorylation following integrin engagement, and this activity is tightly regulated during neurite outgrowth. FAK inhibition slows neurite outgrowth by reducing point contact turnover; however, mutant FAK constructs with enhanced activity stimulate aberrant outgrowth. Importantly, FAK is a major structural component of maturing adhesion sites, which provide the platform for actin polymerisation to drive leading edge advance. In this review, we discuss the coordinated signalling of integrin receptors and FAK, as well as their role in regulating neurite outgrowth and axon elongation. We also discuss the importance of the integrin-FAK axis in vivo, as integrin expression and activation are key determinants of successful axon regeneration following injury.

9.
Nat Nanotechnol ; 18(9): 1060-1066, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37400719

RESUMO

Extreme energy-dissipating materials are essential for a range of applications. The military and police force require ballistic armour to ensure the safety of their personnel, while the aerospace industry requires materials that enable the capture, preservation and study of hypervelocity projectiles. However, current industry standards display at least one inherent limitation, such as weight, breathability, stiffness, durability and failure to preserve captured projectiles. To resolve these limitations, we have turned to nature, using proteins that have evolved over millennia to enable effective energy dissipation. Specifically, a recombinant form of the mechanosensitive protein talin was incorporated into a monomeric unit and crosslinked, resulting in a talin shock-absorbing material (TSAM). When subjected to 1.5 km s-1 supersonic shots, TSAMs were shown to absorb the impact and capture and preserve the projectile.


Assuntos
Som , Talina
10.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861887

RESUMO

Myosin-X (MYO10), a molecular motor localizing to filopodia, is thought to transport various cargo to filopodia tips, modulating filopodia function. However, only a few MYO10 cargoes have been described. Here, using GFP-Trap and BioID approaches combined with mass spectrometry, we identified lamellipodin (RAPH1) as a novel MYO10 cargo. We report that the FERM domain of MYO10 is required for RAPH1 localization and accumulation at filopodia tips. Previous studies have mapped the RAPH1 interaction domain for adhesome components to its talin-binding and Ras-association domains. Surprisingly, we find that the RAPH1 MYO10-binding site is not within these domains. Instead, it comprises a conserved helix located just after the RAPH1 pleckstrin homology domain with previously unknown functions. Functionally, RAPH1 supports MYO10 filopodia formation and stability but is not required to activate integrins at filopodia tips. Taken together, our data indicate a feed-forward mechanism whereby MYO10 filopodia are positively regulated by MYO10-mediated transport of RAPH1 to the filopodium tip.


Assuntos
Integrinas , Pseudópodes , Sítios de Ligação , Espectrometria de Massas , Miosinas/genética
12.
Front Cell Neurosci ; 16: 1014629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467609

RESUMO

The Mercator projection map of the world provides a useful, but distorted, view of the relative scale of countries. Current cellular models suffer from a similar distortion. Here, we undertook an in-depth structural analysis of the molecular dimensions in the cell's computational machinery, the MeshCODE, that is assembled from a meshwork of binary switches in the scaffolding proteins talin and vinculin. Talin contains a series of force-dependent binary switches and each domain switching state introduces quantised step-changes in talin length on a micrometre scale. The average dendritic spine is 1 µm in diameter so this analysis identifies a plausible Gearbox-like mechanism for dynamic regulation of synaptic function, whereby the positioning of enzymes and substrates relative to each other, mechanically-encoded by the MeshCODE switch patterns, might control synaptic transmission. Based on biophysical rules and experimentally derived distances, this analysis yields a novel perspective on biological digital information.

13.
J Cell Sci ; 135(22)2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36398718

RESUMO

The role of mechanical signals in the proper functioning of organisms is increasingly recognised, and every cell senses physical forces and responds to them. These forces are generated both from outside the cell or via the sophisticated force-generation machinery of the cell, the cytoskeleton. All regions of the cell are connected via mechanical linkages, enabling the whole cell to function as a mechanical system. In this Review, we define some of the key concepts of how this machinery functions, highlighting the critical requirement for mechanosensory proteins, and conceptualise the coupling of mechanical linkages to mechanochemical switches that enables forces to be converted into biological signals. These mechanical couplings provide a mechanism for how mechanical crosstalk might coordinate the entire cell, its neighbours, extending into whole collections of cells, in tissues and in organs, and ultimately in the coordination and operation of entire organisms. Consequently, many diseases manifest through defects in this machinery, which we map onto schematics of the mechanical linkages within a cell. This mapping approach paves the way for the identification of additional linkages between mechanosignalling pathways and so might identify treatments for diseases, where mechanical connections are affected by mutations or where individual force-regulated components are defective.


Assuntos
Citoesqueleto , Mapas de Interação de Proteínas , Fenômenos Biomecânicos , Citoesqueleto/metabolismo
14.
Cells ; 11(19)2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36231001

RESUMO

ß2 integrins are expressed on all leukocytes. Precise regulation of the ß2 integrin is critical for leukocyte adhesion and trafficking. In neutrophils, ß2 integrins participate in slow rolling. When activated by inside-out signaling, fully activated ß2 integrins mediate rapid leukocyte arrest and adhesion. The two activation pathways, starting with selectin ligand engagement and chemokine receptor ligation, respectively, converge on phosphoinositide 3-kinase, talin-1, kindlin-3 and Rap1. Here, we focus on recent structural insights into autoinhibited talin-1 and autoinhibited trimeric kindlin-3. When activated, both talin-1 and kindlin-3 can bind the ß2 cytoplasmic tail at separate but adjacent sites. We discuss possible pathways for talin-1 and kindlin-3 activation, recruitment to the plasma membrane, and their role in integrin activation. We propose new models of the final steps of integrin activation involving the complex of talin-1, kindlin-3, integrin and the plasma membrane.


Assuntos
Antígenos CD18 , Talina , Antígenos CD18/metabolismo , Integrinas/metabolismo , Ligantes , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Receptores de Quimiocinas , Selectinas , Talina/metabolismo
15.
Chem Soc Rev ; 51(20): 8696-8755, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36190355

RESUMO

Antimicrobial resistance is directly responsible for more deaths per year than either HIV/AIDS or malaria and is predicted to incur a cumulative societal financial burden of at least $100 trillion between 2014 and 2050. Already heralded as one of the greatest threats to human health, the onset of the coronavirus pandemic has accelerated the prevalence of antimicrobial resistant bacterial infections due to factors including increased global antibiotic/antimicrobial use. Thus an urgent need for novel therapeutics to combat what some have termed the 'silent pandemic' is evident. This review acts as a repository of research and an overview of the novel therapeutic strategies being developed to overcome antimicrobial resistance, with a focus on self-assembling systems and nanoscale materials. The fundamental mechanisms of action, as well as the key advantages and disadvantages of each system are discussed, and attention is drawn to key examples within each field. As a result, this review provides a guide to the further design and development of antimicrobial systems, and outlines the interdisciplinary techniques required to translate this fundamental research towards the clinic.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Bactérias , Humanos
16.
Hum Mol Genet ; 31(24): 4159-4172, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35861643

RESUMO

Adhesion of cells to the extracellular matrix (ECM) must be exquisitely coordinated to enable development and tissue homeostasis. Cell-ECM interactions are regulated by multiple signalling pathways that coordinate the activation state of the integrin family of ECM receptors. The protein talin is pivotal in this process, and talin's simultaneous interactions with the cytoplasmic tails of the integrins and the plasma membrane are essential to enable robust, dynamic control of integrin activation and cell-ECM adhesion. Here, we report the identification of a de novo heterozygous c.685C>T (p.Pro229Ser) variant in the TLN1 gene from a patient with a complex phenotype. The mutation is located in the talin head region at the interface between the F2 and F3 domains. The characterization of this novel p.P229S talin variant reveals the disruption of adhesion dynamics that result from disturbance of the F2-F3 domain interface in the talin head. Using biophysical, computational and cell biological techniques, we find that the variant perturbs the synergy between the integrin-binding F3 and the membrane-binding F2 domains, compromising integrin activation, adhesion and cell migration. Whilst this remains a variant of uncertain significance, it is probable that the dysregulation of adhesion dynamics we observe in cells contributes to the multifaceted clinical symptoms of the patient and may provide insight into the multitude of cellular processes dependent on talin-mediated adhesion dynamics.


Assuntos
Integrinas , Talina , Talina/genética , Talina/química , Talina/metabolismo , Integrinas/genética , Integrinas/metabolismo , Ligação Proteica , Membrana Celular/metabolismo , Adesão Celular/genética
17.
J Cell Sci ; 134(20)2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34708856

RESUMO

Talins are cytoskeletal linker proteins that consist of an N-terminal head domain, a flexible neck region and a C-terminal rod domain made of 13 helical bundles. The head domain binds integrin ß-subunit cytoplasmic tails, which triggers integrin conformational activation to increase affinity for extracellular matrix proteins. The rod domain links to actin filaments inside the cell to transmit mechanical loads and serves as a mechanosensitive signalling hub for the recruitment of many other proteins. The α-helical bundles function as force-dependent switches - proteins that interact with folded bundles are displaced when force induces unfolding, exposing previously cryptic binding sites for other ligands. This leads to the notion of a talin code. In this Cell Science at a Glance article and the accompanying poster, we propose that the multiple switches within the talin rod function to process and store time- and force-dependent mechanical and chemical information.


Assuntos
Mecanotransdução Celular , Talina , Sítios de Ligação , Integrinas/metabolismo , Ligação Proteica , Transdução de Sinais , Talina/genética , Talina/metabolismo
18.
Cell Rep ; 36(11): 109716, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525374

RESUMO

Filopodia assemble unique integrin-adhesion complexes to sense the extracellular matrix. However, the mechanisms of integrin regulation in filopodia are poorly defined. Here, we report that active integrins accumulate at the tip of myosin-X (MYO10)-positive filopodia, while inactive integrins are uniformly distributed. We identify talin and MYO10 as the principal integrin activators in filopodia. In addition, deletion of MYO10's FERM domain, or mutation of its ß1-integrin-binding residues, reveals MYO10 as facilitating integrin activation, but not transport, in filopodia. However, MYO10's isolated FERM domain alone cannot activate integrins, potentially because of binding to both integrin tails. Finally, because a chimera construct generated by swapping MYO10-FERM by talin-FERM enables integrin activation in filopodia, our data indicate that an integrin-binding FERM domain coupled to a myosin motor is a core requirement for integrin activation in filopodia. Therefore, we propose a two-step integrin activation model in filopodia: receptor tethering by MYO10 followed by talin-mediated integrin activation.


Assuntos
Integrina beta1/metabolismo , Miosinas/metabolismo , Pseudópodes/metabolismo , Talina/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Adesões Focais/metabolismo , Humanos , Integrina beta1/química , Integrina beta1/genética , Miosinas/antagonistas & inibidores , Miosinas/genética , Ligação Proteica , Domínios Proteicos , Interferência de RNA , RNA Interferente Pequeno/metabolismo
19.
J Am Chem Soc ; 143(36): 14726-14737, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34463480

RESUMO

Talin and vinculin are part of a multicomponent system involved in mechanosensing in cell-matrix adhesions. Both exist in autoinhibited forms, and activation of vinculin requires binding to mechanically activated talin, yet how forces affect talin's interaction with vinculin has not been investigated. Here by quantifying the kinetics of force-dependent talin-vinculin interactions using single-molecule analysis, we show that mechanical exposure of a single vinculin binding site (VBS) in talin is sufficient to relieve the autoinhibition of vinculin, resulting in high-affinity binding. We provide evidence that the vinculin undergoes dynamic fluctuations between an autoinhibited closed conformation and an open conformation that is stabilized upon binding to the VBS. Furthermore, we discover an additional level of regulation in which the mechanically exposed VBS binds vinculin significantly more tightly than the isolated VBS alone. Molecular dynamics simulations reveal the basis of this new regulatory mechanism, identifying a sensitive force-dependent change in the conformation of an exposed VBS that modulates binding. Together, these results provide a comprehensive understanding of how the interplay between force and autoinhibition provides exquisite complexity within this major mechanosensing axis.

20.
J Cell Biol ; 220(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34264272

RESUMO

Talin is a mechanosensitive adapter protein that couples integrins to the cytoskeleton. Talin rod domain-containing protein 1 (TLNRD1) shares 22% homology with the talin R7R8 rod domains, and is highly conserved throughout vertebrate evolution, although little is known about its function. Here we show that TLNRD1 is an α-helical protein structurally homologous to talin R7R8. Like talin R7R8, TLNRD1 binds F-actin, but because it forms a novel antiparallel dimer, it also bundles F-actin. In addition, it binds the same LD motif-containing proteins, RIAM and KANK, as talin R7R8. In cells, TLNRD1 localizes to actin bundles as well as to filopodia. Increasing TLNRD1 expression enhances filopodia formation and cell migration on 2D substrates, while TLNRD1 down-regulation has the opposite effect. Together, our results suggest that TLNRD1 has retained the diverse interactions of talin R7R8, but has developed distinct functionality as an actin-bundling protein that promotes filopodia assembly.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Chaperonas Moleculares/metabolismo , Pseudópodes/metabolismo , Talina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Movimento Celular , Clonagem Molecular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Osteoblastos/citologia , Osteoblastos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Pseudópodes/ultraestrutura , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Talina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...